
Chapter 4 
Improving Evaluation Using 
Visualization Decision-Making Models: 
A Practical Guide 
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Abstract In visualization research, evaluation is a crucial step to assess the impact 
of visualization on decision-making. Existing work often gauges how good a 
visualization is by measuring its ability to induce accurate and fast judgment. 
While those measures provide some insight into the efficacy of a graph, underlying 
cognitive processes responsible for reasoning and judgment are often overlooked 
when they can have significant implications for visualization recommendation. 
Cognitive processes do not need to be a black box. There exists multiple models 
that describe decision processes, such as theories from behavioral economics and 
cognitive science. In this chapter, we compare and contrast different models and 
advocate for the inclusion of cognitive models for visualization evaluation in 
the context of decision-making. The goal of this work is to show visualization 
researchers the advantages of adopting a more mechanistic approach to evaluation 
at the intersection of visualization and cognitive science. 

4.1 Introduction 

We make decisions based on data every day, ranging from trivial to complex. Such 
choices could include when to leave the house to catch the bus, take an umbrella 
given the chance of rain, or invest in the stock market given the historical trends. 
In many instances, charts and graphs have become an integral part of our decision-
making process. Visualization research has provided valuable insight into perceptual 
science and has led to the amelioration of chart design and visualization recom-
mendations. Charts frequently appear in information communication, data analysis, 
sensitization campaigns, and even medical diagnostics and can significantly impact 
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people’s lives. But all charts are not equal. When a new graph or chart is designed, 
it is essential to conduct an evaluation under realistic decision-making conditions to 
understand and foresee its effect on real-life decisions. 

However, it can be hard to know if an evaluation is close enough to natural 
decision-making conditions to provide meaningful insights into the efficacy of a 
visualization. One way to conduct rigorously valid evaluations is to understand and 
simulate the underlying mental mechanisms at work when a viewer completes the 
real-world task. Fortunately, cognitive scientists have extensively studied cognitive 
mechanisms responsible for interpreting and misinterpreting visual designs under 
different modes of reasoning. For example, dual-process theory posits that there 
exists two types of decisions operating under distinct cognitive processes: intuitive 
(Type 1) and strategic (Type 2) decisions, which require significantly more effort 
than Type 1 [33]. In this chapter, we dive into multiple prominent perspectives of 
decision-making. We discuss how the researchers can apply frameworks and models 
pertaining to visualization design and evaluation in the context of decision-making. 
We propose that dual-process cognitive models are some of the most useful and 
easily applied for visualization research. This chapter will be helpful for designers 
and visualization researchers looking to adopt a more granular approach to decision-
making and conduct holistic evaluations for better visualization recommendations. 

4.1.1 Evaluation Methods for Decision-Making 

Research on visualization evaluation is vast and varied [17, 43], with high tendencies 
toward evaluating visualization based on speed and accuracy in perceptual judg-
ments [64]. A relatively small number of studies have focused on evaluating people’s 
visualization-aided decisions. Researchers have investigated how visualizations 
impact attitudes toward risk and hypothetical decisions [22, 62]. For example, Ruiz 
et al. [62] conducted a study where they asked at-risk patients to decide whether they 
would opt for screening based on hypothetical risk information about a disease [62]. 
They found that people are more risk-averse when presented with icon arrays. Kay 
et al. [37] evaluated how well different visualizations communicate the uncertainty 
of transit data by asking participants to estimate the likeliness of bus arrival times 
on a scale of 0 to 100 [37]. 

In traditional visualization empirical studies, visualizations are often evaluated 
by their ability to prompt accurate and fast responses in behavioral tasks, that 
may or may not involve making a decision. While it is common to extrapolate the 
appropriateness of visualizations for decision-making through these performance-
based measures, there are less attempts to evaluate visualization designs based on 
the quality of the decisions they elicit [51]. Empirical evaluations of visualization 
are generally challenging [9, 17, 56]. Thus, one possible reason for the lack of 
evaluations with decision-making is that it is generally more straightforward to 
gauge effectiveness via the speed and accuracy of perceptual judgments. Consider, 
for example, the chart shown in Fig. 4.1, which shows a given person’s chance
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Fig. 4.1 A bar chart 
comparing the survival rates 
after one year of surgery 
versus conservative 
management for a 
80-year-old prostate cancer 
patient [23] 

of surviving prostate cancer after one year if they choose to have surgery (e.g., 
radical prostatectomy) compared to conservative treatments (e.g., watchful waiting). 
One could evaluate this chart based on how well it facilitates fast and accurate 
comparisons of the two quantities, or based on the responses from semi-structured 
interviews with prostate cancer patients [23]. Experiment protocols like these are 
more straightforward than those that measure decisions because it is feasible to 
define a ground truth or expected behavior for the analysis of study findings. 

In practice, we often use performance-based findings to inform the selection 
of visualization designs, implying that accurate decoding likely leads to better 
and more informed decisions. Based on our current understanding of perceptual 
judgments, the bar chart in Fig. 4.1 uses position for data encoding, and therefore is 
ideal for comparing quantities and seeing small differences [12, 13]. However, one 
could reasonably assert that the difference between the survival rates for surgery 
(100%) and conservative treatment (96%) is statistically insignificant, but the bar 
chart might inadvertently emphasize a potentially minor disparity. Existing studies 
show that the ideal visualization depends on the task. For example, the superior 
representation for magnitude estimation might not be optimal for part-to-whole 
judgments [20, 65, 66]. Some researchers have used simulations to observe the 
direct impact of visualization design on decisions. In one study by Bancilhon et 
al. [4], participants played a lottery game and chose to either enter the lottery or 
receive guaranteed monetary gains based on five standard visualization designs. 
They analyzed the quality of the decisions based on economic optimality and found 
that people made significantly more risk-seeking decisions with circle and triangle 
charts [4] (see Sect. 4.3.1.2). 

Decision-making is complex and multifactorial. In addition to the graph’s 
appropriateness, a patient’s decision to have surgery (or not) will depend on 
various factors including illness severity age, commodities, and personal finances. 
People are also prone to various cognitive biases [16], and individual differences in 
personality and cognitive abilities may also influence usability and choice [40, 53]. 
At a fundamental level, the decision-maker’s perspective drives the decision, and the 
typical approach of defining a ground truth in an evaluation is non-trivial. Despite 
this challenge, other fields have demonstrated success in modeling and predicting, 
and reasoning about how people make decisions [33, 35, 55, 57]. We argue that
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for visualization to be a practical tool for supporting decision-making, we need to 
understand the underlying cognitive processes behind decision-making and adopt a 
unifying cross-discipline framework to evaluate visualization in this context. 

To aid this discussion, we adapt Balleine’s definition of decision [3]: 

A decision is a choice between competing courses of actions [3]. 

4.2 The Science of Making Decisions 

Decisions are governed by complex systems of reasoning that scholars have studied 
for decades. Researchers in the visualization community have pursued two dominant 
approaches to study decision-making under risk. The first provides a detailed and 
quantifiable view of decision-making. It assumes that humans make decisions 
rationally by weighing the risk and expected outcome of different prospects, two 
factors that can be measured and modeled. The second posits that many factors can 
influence decision-making. It proposes that humans make both intuitive (Type 1) 
and strategic (Type 2) decisions and that decision-makers usually default to using 
intuition. These two distinct types of decisions operate under a dual-process system. 
To improve visualization research in the context of decision-making, it is crucial to 
understand the meaning and implications of decision-making under both umbrellas. 
We structure this chapter around two prevalent approaches: The Utility-Optimal 
Perspective and The Dual-Process Perspective. 

4.3 The Utility-Optimal Perspective 

Behavioral economists have long studied how people make choices under risk by 
investigating prospects or gambling scenarios. A prospect is a contract: 

.[(x1, p1), (x2, p2), . . . , (xn, pn)], (4.1) 

which yields . xi with probability . pi , where .
∑n

i=1 pi = 1 [35]. Prospects provide a 
simple model for understanding risky decisions. The classical method for evaluating 
a gamble is through assessing its expected value. The expected value of a prospect 
is the sum of the outcomes where the probabilities weigh each value: 

.ev =
n∑

i=1

pixi . (4.2)
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Consider the gambling scenario from Kahneman and Tversky’s book [35]: 

Which do you prefer? 
Option A: 50% chance to win $1000, 50% chance to win $0 
Option B: $450 for sure 

The expected value of option A is 500 (..5 × 1000 + .5 × 0) and the expected 
value of option B is 450 (.1 × 450). A rational decision-maker would then choose 
option A over option B. However, most people would choose the sure payment of 
$450. This example highlights the perhaps obvious conjecture that humans are not 
always rational [35]. 

Expected Utility Theory (EUT) is one of the foundational theories of decision-
making and has served for many years as both a model describing economic 
behavior [21] and a rational choice model [38]. In particular, it states that people 
make choices based on their utility—the psychological values of the outcomes. For 
instance, if a person prefers an apple over a banana, it stands to reason that they 
would prefer a 5% chance of winning an apple over a 5% chance of winning a 
banana. Using EUT, we can assess the overall utility of a gamble: 

.EU =
n∑

i=1

piu(xi), (4.3) 

where the function u assigns utility to an outcome. We sum the utilities u of the 
outcomes . xi weighted by their probabilities . pi . This model has its limitations. 
It also assumes that humans are consistent and primarily decide on prospects 
based on their utility [35, 69]. Nevertheless, EUT provides a standardized tool for 
researchers to evaluate peoples’ behavior when choosing among risky options and 
is the foundation for the other dominant theory in behavioral economics, Prospect 
theory [35]. 

Unlike EUT, prospect theory embraces the human factors present in decision-
making. Kahneman and Tversky [35] are the pioneer contributors to this knowledge 
on bias in decision-making. For example, in their early work, they found that 72 
out of 100 experiment participants favored the option of getting $5000 with a 
probability of 0.001 (e.g., a small probability event) over the prospect of getting 
$5 for sure [35]. Both options have the same expected value, yet most participants 
favored the probability associated with getting $5000. In its simplest form, we can 
represent the equation for prospect theory as 

.V =
n∑

i=1

π(pi)υ(xi), (4.4) 

where the function . υ assigns value to an outcome and the function . π is a probability 
weighing function that encodes the idea that people are likely to overreact to small 
probabilities and underreact to large probability events. In summary, prospect theory 
stipulates that (1) people tend to favor the option of getting a large gain with a small
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probability over getting a small gain with certainty and (2) people tend to prefer a 
small loss with certainty over a large loss with tiny probability. 

4.3.1 Using Utility-Optimality to Evaluate visualizations 

Visualization researchers have leveraged utility-optimal theories to investigate 
how visualization impacts decisions under risk. By approaching decision-making 
from this angle, they create an environment where choices have weights, and 
their evaluation considers the utility-optimal option. We highlight two empirical 
studies from the visualization community and examine their experimental design, 
methodology, and research questions. We will begin with a recent publication 
investigating the impact of uncertainty visualization design by simulating a fantasy 
football scenario. 

4.3.1.1 A Fantasy Football Study 

Kale et al. [36] leveraged utility-optimal theories to observe effect size judgments 
and decision-making with the four uncertainty visualizations. They used a fantasy 
football game to elicit decisions under risk. Participants were shown the number of 
points scored by a certain team with and without the addition of a new player. First, 
they asked participants to estimate a measure of effect size by asking the following 
question: “How many times out of 100 do you estimate that your team would score 
more points with the new player than without the new player?”. They also asked 
participants to make binary decisions indicating whether they would Pay for the new 
player or Keep their team without the new player. On each trial, the participant’s 
goal was to win an award worth $3.17M, and they could pay $1M to add a player to 
their team if they thought the new player improved their chances of winning enough 
to be worth the cost. 

They tested four uncertainty visualizations: 95% containment intervals, hypo-
thetical outcome plots (HOPs), density plots, and quantile dot plots, each with 
and without means added. They found that while adding means to quantile dot 
plots produced significantly more utility-optimal decisions at low variance, it had 
no reliable effect on bias in magnitude estimation. Similarly, adding means to 
HOPs caused significantly more bias in magnitude estimation across both low and 
high variance but had no reliable effect on decisions. By evaluating uncertainty 
visualizations using utility-optimality, Kale et al. [36] observed a decoupling of 
performance across tasks, where the visualization designs that support the least 
biased effect size estimation do not support the best decision-making and vice versa. 
The authors attribute this inconsistency to the reliance on different heuristics across 
the two different tasks, consistent with Kahneman and Tversky’s theory [35]. This 
finding highlights the value of leveraging utility-optimal theories when studying 
visualization for decision-making.
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4.3.1.2 A Classic Lottery Game 

Many studies that leveraged utility-optimal decision-making theories employed 
tasks with hypothetical gains and losses (e.g., [10, 31, 36, 49]). However, it is unclear 
if people make the same risk judgments when gains and losses do not tangibly affect 
them. To evaluate visualization decision-making with greater ecological validity 
(i.e., more closely matching real-world conditions), Bancilhon et al. [4] created a 
gambling game that immersed participants in an environment where their actions 
impacted the bonus payments they received. The experiment investigated the effect 
of five charts on decision-making. Replicating the experiment design of prior work 
in the economic decision-making domain [8], the researchers presented participants 
with two-outcome lotteries: take the sure gain or gamble at a risk. The experiment 
employed a point system for payoff quantities where 1 point equaled $0.01. The 
probabilities, . pi , were drawn from the set .P = {.05, .1, .25, .5, .75, .9, .95} and the 
outcomes . x1 and . x2 ranged from 0 to 150 points ($0 to $1.50). 

Figure 4.2a shows an example of the lottery sheet used in the study. At the end 
of the experiment, the game randomly selected one row from each of the 25 lottery 
sheets that they saw, and the participant’s choice in that row determined their bonus. 
If the participant chose the sure payout in the selected row, their bonus increased 
by that amount. If they opted to enter the lottery, the game simulated the lottery to 
determine the payment, with the potential gains and the probabilities as parameters. 

Overall, the findings from the study [4] validate that we can use utility-optimal 
theories to evaluate visualization designs, and that the latter can influence gambling 
behavior. They had three major findings. First, the icon array was most likely to 
elicit risk neutrality and is, therefore, the most effective design for decision-making. 
Second, they found that participants who saw a bar chart exhibited behavior that 
was slightly risk-averse, mirroring behavior in the control text-only group. Third, 
the triangle chart and circle chart elicited risk-seeking behavior with the greatest 
deviation from risk neutrality. It is important to note that these findings are in 
line with the magnitude estimation from the prior literature [13] that shows that 
proportion estimates with bar charts are more accurate than with triangle and circle 
charts. 

4.3.2 Outlook on Using Utility-Optimal Theories for 
Visualization Evaluation 

Although we only highlighted a few studies in this section, it is essential to note 
that other researchers have also examined decision-making with visualization using 
a similar framework (e.g., [10, 26, 31, 49, 71]). For example, Padilla et al. [49] 
conducted a scenario where participants made resource allocation judgments by 
comparing the cost of sending cold-weather aid to alpaca farmers in Peru who 
were at risk of losing their livestock due to cold temperatures and the expected
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Fig. 4.2 The charts and lottery sheet used in the study by Bancilhon et al. [4]. Participants played 
a gambling game in which their choices determined their bonuses 

value of the penalty for not sending aid, resulting in the deaths of alpacas (see 
also, [10, 31]). Perhaps most importantly, for visualization evaluation, the utility-
optimal perspective provides a tractable approach to quantifying and modeling 
decision-making under risk. In both Kale et al.’s and Bancilhon et al.’s studies 
[4, 36], the researchers leveraged the framework to isolate the effect of visualization 
design. In some cases, their results suggest that using visualizations might help to 
reduce biases and guide people towards utility-optimality [4].
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It is typical for researchers to design games or simulations to observe people’s 
decisions in action. In many cases, it is difficult, if not impossible, to test the impact 
of visualizations on decisions in real life as it may give rise to safety, health, and 
ethical issues. For example, it might be unsafe and unethical for a gambling game to 
test the effect of visualizations that communicate information about a severe health 
condition that a participant has or a natural disaster affecting the participant at the 
time of the study. The utility-optimal framework using the situational scenarios in 
the two studies [4] and [36] provides a good test bed for evaluating visualizations 
for decision-making. In order to apply this framework to behavioral studies, there 
needs to be a cost associated with each course of action. The utility-optimal decision 
should be defined as the one where prospective gains are maximized and losses are 
minimized. By quantifying user choices and comparing them to the utility-optimal 
decision, we can infer the risk behavior elicited by the visualization design. It is 
important to take into account people’s patterns of risk behavior since humans do 
not normally default to risk neutrality regardless of the type of representation used. 
By providing an incentive to decision-makers, such an experiment design can more 
closely mimic real-life choices over hypothetical decision scenarios. 

While Bancilhon et al. [4] have shown that the visualizations that lead to better 
accuracy also induce more optimal decisions, Kale et al. [36] have shown that the 
visualization designs that lead to the least bias did not lead to the most optimal 
decisions and vice versa. First, this shows that task and visualization choice matter 
in evaluation. Second, it raises an important question: how do we define the best 
visualization when accuracy and utility-optimal decisions are inconsistent? In Kale 
et al.’s study [36], one approach to determine the best uncertainty visualization 
would be to pick the one with the best compromise between high accuracy and 
optimal decision-making. Huang et al. [27] have developed a model of visualization 
efficacy that includes speed, accuracy, and cognitive load, which is often overlooked. 
One way forward could be to refine this model to include decision-making. Another 
approach would be to simply not attempt to choose a single best visualization for 
reasoning about uncertainty. Kale et al. [36] have shown that different visualizations 
are best for different tasks. There needs to be a common recognition in the 
visualization community that a one-size fits all approach could be obsolete. 

Furthermore, using utility-optimality for visualization evaluation raises another 
crucial question: how do we define the best decisions? Some would argue that 
rationality should be the golden standard since it maximizes the potential outcome. 
Bancilhon et al. [4] question whether or not that should be the case. If the goal is 
rationality, their findings suggest that the icon array was the most likely to elicit risk-
neutral choices. However, since people make decisions according to their personal 
inclination to risk, there might be a cost in attempting to steer them toward utility-
optimality. Perhaps an ideal visualization should support the users in making a 
decision based on their individual risk behaviors. 

In the next section, we examine a different perspective on decision-making, 
positing that humans default to intuitive reasoning when making decisions. We 
discuss working memory as a metric for usability in visualization decision-making 
(Fig. 4.3).



94 M. Bancilhon et al.

Fig. 4.3 An illustration of 
Type 1 and Type 2 reasoning 
as conceptualized by Tversky 
and Kahneman [33]. Type 1, 
our intuitive system, is at the 
forefront of decision 
processes, while Type 2, our 
analytic system, operates 
secondarily 

Working memory consists of various mental components that can hold a 
limited amount of transformable information for a finite period [14]. In 
visualization research, working memory is commonly associated with mental 
effort [47]. Note that there is an ongoing debate on the definition of working 
memory [14] 

4.4 The Dual-Process Perspective 

In addition to the biases associated with gains and losses (e.g., prospect theory), 
many other cognitive biases are involved when making decisions under risk. One 
perspective that describes a large body of biases proposes that people rely on 
quantitative reasoning and gist-based intuition—two systems that operate in parallel 
[33]. 

Daniel Kahneman published a book entitled Thinking Fast and Slow, where 
he summarized decades of research on a dual-system of decision-making [33]. In 
his earlier work, his collaborators and himself differentiated between two types 
of processing systems, termed System 1 (or intuition) and System 2 (or reasoning) 
[32] (later termed Type 1 and Type 2). Type 1 processing guides our intuition and 
recognition patterns, which occur automatically without effort. In contrast, Type 
2 processing is responsible for analytical thinking and requires directed effort to 
use [33]. 

Dual-Process Theory introduces a reasoning model that formalizes the differ-
ences between Type 1 and Type 2 and their impact on decision-making [34, 67]. 
Proponents of Dual-Process Theory posit that most decisions stem from intuitive 
thinking rather than rational and calculated thinking [33]. Type 1 reasoning involves 
fast and intuitive thinking, while Type 2 is a slow and analytical method of thinking.
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Scholars propose that Type 2 processing uses significant working memory, while 
Type 1 only uses negligible working memory [18]. Using this definition, the 
researchers can determine when people are using Type 2 processing by identi-
fying when people show an increase in working memory demand. Visualization 
researchers have demonstrated how to measure an increase in working memory 
demand using pupillometry (e.g., dilation of pupils [47]), dual-tasking (e.g., doing 
two tasks a once [11, 47]), individual differences measures (e.g., working with 
participants with high- and low-working memory capacity [10]), the NASA-TLX 
(e.g., self-reported work-load [10]), and electroencephalography (e.g., neuroimag-
ing [1]). Type 1 is at the forefront of cognitive processes, and it often requires 
significant effort to switch from Type 1 to Type 2 in order to avoid cognitive 
biases and misleading heuristics. Despite utilizing different strategies, dual-process 
theories propose that the processes do not necessarily occur in separate cognitive or 
neurological systems [19]. 

Other frameworks have adapted the general dual-process perspective as well. 
Notably, Reyna and Brainerd introduced Fuzzy Trace Theory (FTT) [58]. The theory 
posits that people form two types of mental representations from information: Gist 
and Verbatim representations. A verbatim representation is a detailed representation 
of an event that often comprises precise numbers and facts. Gist representation, on 
the contrary, is vague and high-level and captures the essential meaning of informa-
tion. FTT asserts that people make decisions by extracting meaning from verbatim 
input to make a gist-based judgment. According to Reyna and Brainerd [58], 
the human memory contains various reasoning-relevant information, ranging from 
preserving the exact form of input or only retaining abstract representations. People 
operate somewhere between the highest level of gist and the highest level of 
verbatim, on a gist-to-verbatim continuum [58]. Typically, humans rely on the least 
precise gist representation necessary to make a decision, and this characteristic is 
generally referred to as “fuzzy processing preference” [58]. 

Although there is a long history of theories on dual-processes, the high-level 
ideas are similar. They assert that there are two kinds of reasoning. One is implicit, 
intuitive, and unconscious, and the other is explicit, conscious, and slow. For 
simplicity, we will refer to this general class of theories as Dual-Process theories. 

4.4.1 Dual-Process in Decision-Making 

Fuzzy Trace Theory states that people make decisions by extracting meaning 
from verbatim input to make a gist-based judgment. Because precision is often 
associated with accuracy, many believe that quantitative reasoning is superior to 
qualitative reasoning. However, in some cases, fuzzy representation of information 
does not affect reasoning accuracy [60]. Reyna and Lloyd [59] have shown that 
experts in the medical field tend to engage more in gist-based decision-making than 
novices. Tversky and Kahneman made the argument that intuition is a synonym for
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recognition [33]. Experts recognize familiar situations and can therefore make fast 
and accurate decisions even when they are complex. 

Although Type 1 has been proven to be efficient [59, 60], it is also more sus-
ceptible to false first impressions and framing effects [33]. Consider the following 
question: 

A bat and ball cost $1.10. The bat costs $1 more than the ball. How much does the ball cost? 

More than 50% of students at Harvard, Princeton, and the Massachusetts Institute 
of Technology routinely gave the incorrect answer, insisting the ball costs 10 
cents [33].1 Type 1 is at the forefront of cognitive processes, and in order to obtain 
the correct answer, a switch from Type 1 to Type 2 is required to overcome cognitive 
biases. 

Before the acknowledgement of the role of Type 1, many believed that Type 2 
was solely in charge of decision-making operations. Expected Utility Theory posits 
that people make decisions rationally, using Type 2 to compute the utility of events. 
The recognition of dual modes of reasoning lead to the development of prospect 
theory [35] (see Sect. 4.3) and revolutionized decision-making research. 

4.4.2 Dual-Processes and Visualization Evaluation 

In the medical field, researchers have investigated the impact of visualization design 
on gist reasoning. For example, Feldman et al.’s first goal [20] was to investigate 
which graphical formats induced the most accurate perception of quantitative 
information in patients making treatment decisions. Second, they inquired about the 
formats that facilitate processing. The authors highlight the importance of ease of 
processing, especially when the patient feels overwhelmed by the diagnostic. They 
conducted an experiment to test the performance of variations of 6 visualization 
formats. Participants had to minimize how long the visualizations appeared on the 
screen while remaining accurate when answering questions about the charts. They 
were shown two quantities and were asked to make a gist judgment by choosing the 
one that showed the larger chance of survival or the smaller chance of side effects. 
They were also asked to make a verbatim judgment by determining the size of the 
difference. 

In this study, Feldman et al. [20] used response time as a proxy for ease of 
information processing. Their results suggest that systematic ovals, which encode 
data in a natural frequency format, are likely the format that represents the best 
compromise for accurate processing of both gist and detailed information while 
also demanding relatively little effort. Similarly, Hawley et al. [24] conducted an 
experiment investigating gist and verbatim reasoning through similar comparison

1 The correct answer to this problem is that the ball costs 5 cents and the bat costs –at a dollar 
more– $1.05 for a grand total of $1.10. 
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and estimation tasks. They found that viewing a pictograph was associated with 
adequate levels of both gist and verbatim knowledge and that superior medical 
treatment choices were made in both cases. 

In their work, Feldman et al. [20] question the overall effectiveness of vertical 
bars with scales, which was the best visualization for gist reasoning. The authors 
state that many patients demand detail-level information, and they defined the best 
visualization as the one that is effective in eliciting both types of reasoning. While 
this prior work gives evidence that charts using natural frequency encoding perform 
better under both gist and verbatim reasoning in comparison tasks, further research 
is required to examine whether the findings are generalizable to other tasks. 

4.4.3 Outlook on Using the Dual-Processing Approach 
for Visualization Evaluation 

While the Expected Utility Framework provides a method to mathematically model 
decisions, the Dual-Process framework is not straightforward. Feldman et al. [20] 
and Hawley et al. [24] have studied how visualization affects Type 1 and Type 
2 reasoning in a comparison task. Note that it is possible for both processes to 
be used to make a decision. In their respective work, they posit that a magnitude 
estimation task brings about Type 2 reasoning, whereas asking the participant to 
make a comparison choice triggers Type 1 reasoning. If we apply this inference 
to Bancilhon et al.’s lottery game study [4] in Sect. 4.3.1.2, their results are 
consistent with Feldman et al.’s work [20] since the icon array outperforms the 
other visualizations in the decision task. Considering Kale et al.’s fantasy football 
study [36] in Sect. 4.3.1.1, which observed a magnitude estimation task and a 
decision task, it is possible that the selected visualizations have different effects 
under Type 1 and Type 2 reasoning. 

However, our conclusions are solely based on the assumption that the tasks used 
actually elicit two distinct types of reasoning. To further research in this area, we 
need to answer the following research questions, which are core to understanding 
the role of visualization in decision-making: 

• How does the mode of reasoning influence decision-making when using visual-
izations? 

• Can different visualizations elicit different modes of reasoning? 

It is crucial to understand how people make decisions from visualizations. 
Understanding whether a visual encoding facilitates gist or verbatim reasoning 
can have enormous implications for visualization designers. By expanding our 
knowledge in this area, we can tailor visualizations to our audience or a specific 
problem area. Bridging the gap between how psychologists and visualization 
researchers reason about decision-making can revolutionize how we evaluate and 
design visualizations.
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Such knowledge can have massive implications for visualization designers. For 
example, visualizations can be tailored and personalized to a specific problem area 
or level of audience expertise. Some visualizations are only seen for a short time 
so we need a quick way of displaying information so that people get the gist of it. 
Moreover, some people might be more prone to gisting and others to probabilistic 
reasoning. Factors such as numeracy and spatial ability likely play a role. 

Further investigations are needed to understand how people reason under this 
dual mode and how it affects their decisions. In the following sections, we examine 
cognitive models of decision-making with visualization and advocate for their 
integration into visualization research to deepen our understanding of decision-
making processes with different charts. 

4.5 Cognitive Models of Decision-Making with Visualization 

Cognitive models are an integration of approaches and can be illustrated as process 
diagrams that conceptualize their mechanisms processes. By applying a cognitive 
model to a problem, a visualization researcher can better understand, model, or even 
evaluate the interaction between the user and the visual design at a cognitive level 
of analysis, as opposed to strictly behavioral. Before diving into the integration of 
a dual-process approach into decision-making research with visualization, we must 
first understand how the mind perceives and understands visualization. Pinker [55] 
proposed a cognitive model depicting the distinction between two mechanisms in 
graph comprehension: bottom-up and top-down mechanisms [55]. 

Bottom-up processing is when the mind is directly influenced by a visual 
stimulus which is utilized to construct a visual description. 
Top-down processing is based on the viewer’s goals, experiences, and other 
individual differences. 

Prior knowledge about the graph is then retrieved from long-term memory in 
the form of an established graph schema. It is essential to point out that with 
familiar charts, the visual schema will be retrieved from memory faster and more 
efficiently, facilitating Type 1 reasoning [48]. This match process also occurs when 
visual properties are altered. The viewer then retrieves the graph schema that is the 
most similar to the visual array. When a graph schema is retrieved, the viewer uses 
the information from the graph schema to interpret the visualization. Bottom-up
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attention is influenced by saliency in the visualization design. Features that attract 
bottom-up attention are color, edges, lines, and foreground information. 

Graph schema is memorized graphic conventions [55]. 

When external factors impact knowledge retrieval, the viewer is considered to 
be taking a top-down approach. Top-down attention is based on the viewer’s goals, 
experiences, and other individual differences. There are other factors that can affect 
visualization comprehension, such as the nature of the task. Viewers may need to 
transform their mental representation of the visualization based on their task or 
conceptual questions, and working memory plays are central role in the process 
(Fig. 4.4). 

4.5.1 Padilla’s Dual-Process Model and the Importance 
of Working Memory 

Padilla et al. [48] devised a model that combines theories of visualization compre-
hension, decision-making, and working memory. The motivation for this work is 
the lack of formalization of research from different fields, making it difficult for sci-
entists to integrate cross-domain findings. The authors explored a cognitive model 
of decision-making with visualizations and provide practical recommendations for 
visualization designers. 

In the previous section, we defined two types of graph comprehension mech-
anisms: bottom-up and top-down. The understanding of these two mechanisms is 
crucial in the understanding of Padilla’s Dual-Process Model, with the addition of 
working memory, which are the mental processes associated with effort [48]. 

Padilla et al. [48] assert that working memory plays an important role in decision-
making, but it is often overlooked by visualization researchers as an evaluation 
factor. Before diving into how working memory is involved in the dual reasoning 
system, let’s look at some of its properties. It is important to note that working 
memory capacity is limited [42, 63]. Working memory also increases with task 
difficulty and diminishes over time. Researchers such as Cowan et al. [15] suggest 
that our ability to store information begins to decay after approximately 5–10 
seconds, depending on factors such as the task, type of information, and individual 
differences in working memory capacity. One property of working memory capacity 
that is relevant to dual-process theory is that it limits the amount of attention we can 
allocate to task-relevant information [48]. 

Padilla et al.’s model [48] suggests that when we deliberately employ working 
memory in our decision-making process, we can make slower and more strategic 
but cognitively demanding decisions with visualizations. In other words, working
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Fig. 4.4 An illustrative example of Type 1 versus Type 2 decision as characterized by Padilla et 
al.’s model [48]. (a) An example of a Type 1 decision process in which the viewer is tasked with 
computing the average of the two bars in the graph. A Type 1 approach might make a quick guess 
of the middle point between the two bars. (b) An illustration of a Type 2 decision process. The 
task is the same as subfigure (a) above. In this example, the viewer takes a slower approach and 
estimates the length of each bar. They then compute the average of the two values . 2.4+1.9

2 . Type 2 
activates working memory and can lead to a more effortful but precise estimate if done correctly 

memory is what we use to switch from Type 1 reasoning (requiring nominal working 
memory) to Type 2 (requiring significant working memory). As described in the 
previous section, both Type 1 and Type 2 reasoning can be used to complete the 
decision step. Differences in working memory capacity can influence judgments 
and consequently decision-making. Lohse [41] found that when participants made 
judgments about budget allocation using profit charts, individuals with less working 
memory capacity performed equally well compared to those with more working 
memory capacity when they only made decisions about three regions (easier task). 
However, when participants made judgments about nine regions (harder task),
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individuals with more working memory capacity outperformed those with less 
working memory capacity. Other work finds that participants with low-working 
memory capacity make more accurate resource allocation decisions when using 
density plots and quantile dot plots compared to 95% confidence intervals, point 
estimates, or textual expressions of uncertainty [10]. Furthermore, participants with 
high-working-memory capacity were most accurate with quantile dot plots and 
reported less effort than all other tested methods. This work suggests that 95% 
confidence intervals, point estimates, are textual expressions of uncertainty require 
more working memory than densities and quantile dot plots [10]. The results of 
this study suggest that individual differences in working memory capacity primarily 
influence performance on complex decision-making tasks [10, 41]. 

4.5.2 Outlook on Using Cognitive Models in Visualization 

Padilla et al.’s cognitive model [48] in Sect. 4.5.1 formalizes the implications of 
this dual mode of reasoning for visualization research. This cognitive model is an 
integration of multiple theories and takes a holistic approach to modeling decision-
making with visualization. Applying this model can have a significant impact 
on design and evaluation of visualization interfaces. We provide some practical 
guidance for designers and visualization researchers on how to leverage visual 
features to generate Type 1 or Type 2 reasoning and evaluate visualization designs 
from a dual-process perspective. 

One of the reasons why visualizations are so prominent is because they seem 
effortless. In other words, to design charts that bring about accurate, fast, and 
effortless reasoning, there needs to be a conscious effort to incorporate design 
principles that elicit bottom-up attention on task-relevant information. Padilla’s 
model proposes that bottom-up attention is associated with Type 1 reasoning and 
top-down attention is more likely to generate Type 2 reasoning. Using this principle, 
Padilla et al. allow us to examine core design questions and provide guidelines to 
elicit either reasoning type by altering visual features. 

Modeling visual attention is an important area of research in psychophysics, 
computational modeling, and neurophysiology (see a review of existing work by 
Borji and Itti [7]). When making a choice, the decision-maker must first decode 
the visualization via their visual system [70]. One way to elicit bottom-up attention 
is to align visual features to the users’ existing graph schema. Figure 4.5 shows a 
figure from Padilla et al. where at first glance, it might appear that the introduction 
of the predator species caused a decline in the population of disease X [48]. If 
we look more closely at the graph, we notice that the y-axis is flipped and the 
predator species in fact contributed to the growth of species X. When decoding 
a visualization, we search our long-term memory for knowledge about how to 
interpret the chart and retrieve the graph schema that is the most similar. Altering 
graph conventions can cause errors because the graph schema will no longer match 
the chart. For example, multiple studies find that when the y-axis is inverted people
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Fig. 4.5 Fictional 
relationship between the 
population growth of Species 
X and a predator species, 
where the Y-axis ordering 
does not match standard 
graphic conventions [48] 

consistently come to the wrong interpretation of the chart [52, 72]. These errors are 
likely due to our reliance on graph schema to interpret graphs so much so that we 
do not notice when the schema does not match the chart. 

One of the main design features that can affect decision type is saliency. 
Numerous studies showed that salient information in a visualization draws viewers’ 
attention (e.g., [25, 25, 30, 45, 50, 61, 68]). First, it is important to identify the main 
piece of information that needs to be communicated and then we can direct the 
user’s attention to this information using visual features. There exist behaviorally 
validated saliency models to determine the prominence of different visual encodings 
that will attract viewer’s bottom-up attention, e.g., [28–30]. There is a long history of 
using saliency algorithms in computational imagery. For example, pioneering work 
by Koch and Ullmnan [39] created a saliency map—a two-dimensional topological 
map that encodes conspicuity across the entire scene. The central thesis of their work 
is that salient features within a stimulus “stand out,” thus attracting overt attention. 
There have been some attempts in the visualization community to use this general 
principle to model visual attention in exploratory search tasks [45]. Still, future work 
is needed to model attention in the context of decision-making. 

A critical component of Padilla et al.’s model is the principle that working 
memory is vital for Type 2 processing [48]. It is possible to gain insight into the type 
of decision-making generated by a visualization by measuring the user’s working 
memory capacity. The amount of working memory generated by a task is commonly 
referred to as cognitive load. Remember that Type 1 reasoning does not require 
significant working memory contrarily to Type 2. There exists some prior work 
where the researchers have used measures of working memory to evaluate ease of 
use of visualization. Borgo et al. challenged traditional notions about chart junk 
and showed that embellishments do not generate higher cognitive load compared to 
other visualizations. By using a dual-task paradigm to evaluate different charts, they
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were able to evaluate differences in working memory elicited by different charts 
[6] by observing the dual-task cost. Dual-task cost is described as the decrease in 
performance between single and dual tasks. When the user completes two tasks 
simultaneously, significant memory is required, and by comparing dual-task cost 
across representations, differences in cognitive load can be inferred. There are a 
number of other ways to measure working memory. Castro et al. investigated the 
effect of various uncertainty visualizations on working memory using an operation 
span (OSPAN) task as part of a dual-task paradigm as well as self-reported 
measures [10]. They found that quantile dot plots and density plots are equally 
effective for low-working-memory individuals, while quantile dot plots elicit more 
accurate responses with less perceived effort for high-working-memory individuals. 
Moreover, Peck et al. used fNIRS to evaluate information visualization interfaces 
and found no difference in cognitive load in bar graphs and pie charts [54]. Other 
physical methods include electroencephalogram (EEG) [2] and pupillometry, which 
has shown high levels of correlation with working memory [47]. 

To summarize, two practical ways to elicit decision type are to design according 
to graph schema and saliency. For example, to elicit Type 1 reasoning, some 
elementary steps include verifying that your visualization does not violate any 
graphical conventions and brings forward important information using salient visual 
features. To examine decision type, one can observe working memory through self-
reported measures, behavioral, and psychological methods. Padilla et al.’s model 
[48] is the most updated description of decision-making with visualizations, and 
we advocate that research incorporates this model when evaluating visualization 
design. Although we examined various decision-making models that appear in prior 
literature, they do not describe the entire visualization decision-making process 
using dual-process theory. For example, other models do not account for how 
framing effects of the visual or textual data might influence decisions [46]. Other 
factors such as individual differences (e.g., working memory capacity or spatial 
ability) can mediate the decision process [40, 44, 73] but are not encompassed in 
other models. Numerous researchers have voiced the importance of diversifying 
evaluation measures in the field of visualization [5], which is possible when using 
a cognitive framework. Ultimately, this chapter advocates for measures beyond 
the traditional usability measures, which capture how and why the brain processes 
visualizations. 

4.6 Conclusion 

Adopting decision models can have a significant impact on chart design and 
visualization evaluation. For instance, measuring working memory will diversify 
visualization research by tailoring chart design to individuals with varying levels 
of working memory capacity. Knowledge about dual-process reasoning and insight 
into cognitive load will enable tailoring visualization design to various tasks. 
We assert that for visualization to be reliably effective in real-world decision-
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making settings, research should consider leveraging existing decision theories 
when evaluating visual designs. We reviewed various utility-optimal theories, dual-
process models, and cognitive science frameworks and discussed existing and future 
directions for visualization research. Much of the work discussed in this chapter 
raises valid concerns about evaluation paradigms that emphasize speed and accuracy 
measures. Overall, we advocate for evaluation techniques that go beyond traditional 
usability measures for better theoretical and practical advancements. 
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